
NLP
(bk112)

2023-01-03

Introduction

The domain i have chosen is the research of email communications, identifying spam emails amongst real
emails.

According to Statista [2], 45% of the worlds emails were unsolicited spam in the year 2021 [1] which are
scary stats. There are different types of spam that gets sent, some not being harmful such as 'marketing
mails' from legitimate companies, though some can be harmful such as spoofing spam containing
malware. Spam emails are costing companies billions of dollars each year in security breaches, delayment
of productivity amongst other issues. Though the more inhumane are spoofing emails targeting individuals
for the purpose of gaining access to their banking and investment accounts in order to rob them.

These issues are enough of a reason to work on a solution to this problem. Classifying emails into spam
and non-spam would be a contribution to a solution to the problem, and is the contribution we will be
trying to achieve in this project.

If we could classify emails into spam and non-spam with a 100% success rate, this would directly solve
our predefined problem and would also allow users to communicate via email securely again without
everything being a constant threat. Although 100% would be close to impossible as while the methods and
ideas of filtering spam improve, so do the cybercriminals involved in these spam attacks[4]. One should
always remember, when there is money in an industry, that industry will evolve. Within 2022 it was
reported spam sender sites could earn up around 7000 USD per day [5].

Since emails are text, and are classified as spam or non-spam, it will be suited to handle this as a binary
classification problem which we will be proceeding with.

Dataset

I had come across a reading on classification modeling that directed me to a very nice dataset on Spam
emails, which i will be using here. The dataset is available online at Kaggle[3]. This dataset seems to be
well suited for this projects criteria.

Dataset Description

This is a structured dataset that contains data that was sourced via 'spam assassin' [6] which is an open
source spam project used to classify emails and block spam. This particular dataset was published in 2020.

The dataset was made available as a CSV file.
The file size is 5.5mb, and contains 5172 records with 2 attributes.

Page 1 of 11

The structure of the dataset is in NF1, where each record represents one email. Although there is some
structure within the 'text' attribute, being a 'subject' and 'body' field, this dataset doesn't allow an easy
way of re-structuring this. So we will not re-structuring the data, we will just remove the structure.

Data-types

The dataset's data-types are a mix of textual as well as numerical. Currently the data set consists of 2
attributes being:

'text' : Being a complex data structure of text, containing a 'Subject' field as well as a 'Body' field
'spam' : Being a boolean, identifying if it's a spam email or non-spam

Although there is a mixture of data-types and the 'text' attribute is of a complex data structure,
computationally they all are atomic within the date-set, so we won't need to normalize the structure
further.

Objectives

Our objective in this project is:

Develop a method in which we can classify emails into 'spam' and 'non-spam' based on the title and
body of the email.

Achieving this objective will be beneficial to potential victims of unsolicited mails, by identifying and
removing spam emails before the user becomes a victim would be the goal. How well we are able to
classify emails will determine how useful our project would be at contributing to the domains problems.

We will be using a statistical approach using supervised learning, focusing on the binary classification of
emails, where our objective is to accurately classify an email based on the textual context. Future projects
could be the implementation of this classification model into email servers to filter out spam emails.

Evaluation Metrics

As we are going to be creating a classification model, we are going to need to evaluate how well our
model does. We will be doing this by creating a simpler baseline model to compare our model iterations
to.

We will create a Naive Bayes classification model as our baseline, where we will then score this model
and gain values for the following:

Accuracy : The proportion of correct predictions over all predictions
Recall : The ratio of True Positives to Actual Positive counts, So the measurement of how well the
model identifies a spam email.
Precision : The ratio of True Positives to total count of True Positives, So measures if only spam was
identified as spam.

Page 2 of 11

F1 : A combination of recall and precision

The precision score would be the most important one for us, as we would prefer non-spam not being
classified as spam, as this would create the issue of people not receiving possibly important emails. It
would be more acceptable for the classifier to having spam emails being classified as non-spam. While we
proceed with this project we will see, we end up with very close scores with our baseline and our main
model, so having a few different scoring metrics to compare, will help us evaluate our model.

We will then create our main model with the goal of beating the baseline models scores.

Implementation

In this section, we will:

Process the dataset to get it to a suitable state and normalized enough for training a classification
model.
Create a simple baseline classification model that will be able to classify textual data, possibly a Naive
Bayes classification model.
Create a classification model that will be able to classify textual data better than our base model.

Setting up our notebook

import warnings

warnings.simplefilter(action='ignore', category=FutureWarning)

Importing libraries

import pandas as pd

import numpy as np

from statistics import mean

from sklearn.metrics import classification_report

from sklearn.metrics import r2_score

from sklearn.pipeline import make_pipeline

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from nltk.stem import WordNetLemmatizer

from nltk.corpus import stopwords

Importing the dataset

emails = pd.read_csv(r'./data/emails.csv')

Page 3 of 11

text spam

0 Subject: naturally irresistible your corporate... 1

1 Subject: the stock trading gunslinger fanny i... 1

2 Subject: unbelievable new homes made easy im ... 1

3 Subject: 4 color printing special request add... 1

4 Subject: do not have money , get software cds ... 1

Pre-processing

The dataset is almost clean enough for us to train models on, though there still is some issues we will need
to address for both our baseline model and any other model we choose to train with this dataset:

Remove any records containing NULL fields
Remove the structure in the 'text' attribute
Balancing the dataset
Split our dataset into a training and testing set

We also aren't able to create any sort of classification while our datasets 'text' attribute is in a textual state
as it currently is. We will need to convert this attribute to be represented numerically. We will decide on
this method within each model.

We aren't able to make a accurate analysis with the present of NULL values, and there is no way to
populate these, so we will be deleting these records.

text 0

spam 0

dtype: int64

Great, there are no NULL values, we can proceed with removing the structure within the 'text' feild. There
is no easy way of doing this but just removing the string 'Subject: ' from the email records.

Next we will make sure our dataset is balanced. As with Naive Bayes which will be our baseline, our
scoring can get corrupted if our dataset is skewed to one of the binary classifications. So in the case the
dataset isn't balanced, we should make it balanced.

Lets see a fraction of our data

emails.head()

Identify if any attributes contain NULL

emails.isna().sum()

Removing structure in the dataset, where 'subject' is indicating structure and

not part of the data

emails['text'] = emails['text'].str.replace('Subject: ','')

Page 4 of 11

Orginal spam count: 1368

Orginal non_spam count: 4360

Now our dataset is balanced, we can create our data sets, which will consist of training and testing groups
of our data for our classification model. We will create 5 different versions of the data for analysing the
average scores form each model.

We have opted for a ratio of 8:2, for our training:testing groupings.

Let's create a scoring function for our models

Counting spam and non spam records

spam = emails.loc[emails['spam'] == 1]

non_spam = emails.loc[emails['spam'] == 0]

print("Orginal spam count: ", len(spam))

print("Orginal non_spam count: ", len(non_spam))

Shuffling the datasets

shuffled_spam = spam.sample(frac=1)

shuffled_nonspam = non_spam.sample(frac=1)

Identifying which group has the most values

if len(spam) > len(non_spam):

 max_length = len(non_spam)

else:

 max_length = len(spam)

spam_concat = shuffled_spam[:max_length]

non_spam_concat = shuffled_nonspam[:max_length]

Creating our balanced dataset

ballanced_emails = pd.concat([spam_concat, non_spam_concat], axis=0)

Lets create our datasets

data_sets = []

for count in range(0,5):

 X_train,X_test,y_train,y_test = train_test_split(ballanced_emails.text,

ballanced_emails.spam, test_size=0.20, random_state=count)

 data_sets.append([X_train,X_test,y_train,y_test])

'''

GetAverageScores

Takes 2 arguments

Page 5 of 11

Baseline : Naive Bayes

Naive Bayes will be our baseline classification model as this is a simple and intuitive method that requires
just a few lines of code, and few tunable parameters.

- data_sets : which is an array of objects of the form

{X_train,X_test,y_train,y_test}

- model : which is the ML model to test on

Returns an object containing average scores on the model

'''

def GetAverageScores(data_sets, model):

 # Lets iterate over our dataset and obtain an average score for model

 scores = []

 for data_set in data_sets:

 # Lets fit the model with our training data

 model.fit(data_set[0],data_set[2])

 # Lets do a prediction with our test data

 prediction = model.predict(data_set[1])

 # Record the bayes scores

 report = classification_report(data_set[3], prediction, output_dict = True)

 score = {

 'R2': r2_score(data_set[3],prediction),

 'Accuracy' : report['accuracy'],

 'Average_precision' : report['macro avg']['precision'],

 'Average_recall' : report['macro avg']['recall'],

 'Average_f1' : report['macro avg']['f1-score']

 }

 scores.append(score)

 # Lets record this models average score

 return {

 'Average_R2': mean([x['R2'] for x in scores]),

 'Average_accuracy' : mean([x['Accuracy'] for x in scores]),

 'Average_precision' : mean([x['Average_precision'] for x in scores]),

 'Average_recall' : mean([x['Average_recall'] for x in scores]),

 'Average_f1' : mean([x['Average_f1'] for x in scores])

 }

Create a record to keep all models scores for evaluating at the end

scores = pd.DataFrame()

Page 6 of 11

We will be representing the textual data as a 'TF-IDF' (Term frequency and Inverse document frequency),
the method which we will use to represent 'text' numerically will be with a term-document matrix, by
counting the amount of times a term is represented in an email / record as well as calculating its weight
amongst all emails we can do an analysis with these values. We will be using the tool TfidfVectorizer to do
this.

{'Average_R2': 0.9561674318332903, 'Average_accuracy': 0.989051094890511,

'Average_precision': 0.989221462170163, 'Average_recall': 0.9889271565809679,

'Average_f1': 0.9890385809223926}

From the above results of our baseline model, these aren't bad scores at all, and could possibly be used for
our final model. Though the problem with this model is that, words out of the vocabulary aren't taken into
consideration, so doesn't handle new words very well. It also doesn't consider ordering of words, so
estimating the semantics of the email is difficult.

Because of this we will develop another model to see if we can achieve better and more consistent results.

Support Vector Machine

Here we will create a SVM model, and compare its scores to our baseline.

As a SVM model is more complex than the bayes, and involves many more hyper-parameters, this will
allow us to fine tune our model to get the best possible results. To make finding the most optimal hyper-
parameters easier, we will be utilizing a tool called 'grid search' which will run all permutations of the
parameters and tell us which would be the best to use.

Pre-processing

As we are attempting to beat our baseline performance, we will be trying some further processing of our
original dataset, we will attempt the following:

Lemmatize the dataset.
Removing stop words

Depending on the performance of the model, we will decide if we keep the data processed in this way.

Lets make our bayes model

bayes_model = make_pipeline(TfidfVectorizer(), MultinomialNB())

Lets train and test our model

bayes_average_score = GetAverageScores(data_sets, bayes_model)

print(bayes_average_score)

bayes_average_score['name'] = 'Bayes'

scores = scores.append(bayes_average_score, ignore_index=True)

Page 7 of 11

We will be representing the textual data as a 'TF-IDF' again in this model, although 'TF-IDF' is based on
bag-of-words model which doesn't record text position and semantics, as our baseline had such high
scoring, so we will be using this part of it.

Lets determine what the best parameters would be for our SVM, using grid search.

{'C': 10, 'gamma': 1, 'kernel': 'linear'}

From the above we can know the best parameters to use for our SVM.

Defining parameter range for grid search

param_grid = {'C': [0.1, 1, 10, 100, 1000],

 'gamma': [1, 0.1, 0.01, 0.001, 0.0001],

 'kernel': ['rbf', 'linear']}

Lets make a svm model with grid search

svm_model_grid = GridSearchCV(SVC(), param_grid, refit = True, verbose = 3)

Let's create our text processor

tfidf_vectorizer = TfidfVectorizer()

X_training = tfidf_vectorizer.fit_transform(data_sets[0][0])

Lets fit the svm model with one of the sets to determine what would be the best

parameters

svm_model_grid.fit(X_training,data_sets[0][2])

print(svm_model_grid.best_params_)

Lets make our svm model with those parameters

svm_model = make_pipeline(TfidfVectorizer(), SVC(C=10, gamma=1, kernel='linear'))

Lets train and test our model

svm_average_score = GetAverageScores(data_sets, svm_model)

svm_average_score['name'] = 'SVM_non_processed'

scores = scores.append(svm_average_score, ignore_index=True)

Lets lemmatize the data

data_sets_lemmatized = data_sets.copy()

lemmatizer = WordNetLemmatizer()

for index in range(0,len(data_sets_lemmatized)):

 data_sets_lemmatized[index][0] = data_sets_lemmatized[index][0].apply(lambda x:

' '.join([lemmatizer.lemmatize(w) for w in x.split()]))

Lets train and test our model with the lemmatized data

svm_average_score = GetAverageScores(data_sets_lemmatized, svm_model)

svm_average_score['name'] = 'SVM_lemmatized'

scores = scores.append(svm_average_score, ignore_index=True)

Page 8 of 11

Visualizing results

We have run an instance of our baseline classification model, as well as 3 different instances of a SVM
classification model. The models we have scored are:

Bayes : Being our baseline
SVM_non_processed : Being our SVM model with not further processing
SVM_lemmatized : Being our SVM model with lemmatized training data
SVM_no_stopwords : Being our SVM with stopwords removed from the training data

Average_R2 Average_accuracy Average_precision Average_recall Average_f1

name

Bayes 0.956167 0.989051 0.989221 0.988927 0.989039

SVM_non_processed 0.972242 0.993066 0.993036 0.993134 0.993062

SVM_lemmatized 0.972243 0.993066 0.993000 0.993162 0.993062

SVM_no_stopwords 0.947408 0.986861 0.986890 0.987173 0.986859

<AxesSubplot: title={'center': 'Average scores per model and scoring metric'},

xlabel='name'>

Lets remove stopwords

stop_words = stopwords.words('english')

data_sets_no_stopwords = data_sets.copy()

for index in range(0,len(data_sets_no_stopwords)):

 data_sets_no_stopwords[index][0] = data_sets_no_stopwords[index]

[0].apply(lambda x: ' '.join([word for word in x.split() if word not in

(stop_words)]))

Lets train and test our model with the no stopword data

svm_average_score = GetAverageScores(data_sets_no_stopwords, svm_model)

svm_average_score['name'] = 'SVM_no_stopwords'

scores = scores.append(svm_average_score, ignore_index=True)

Let view the score records of the models

scores = scores.set_index('name')

scores

Lets plot the score records

scores.plot(title = 'Average scores per model and scoring metric')

Page 9 of 11

Conclusion

Evaluation

According to our scoring records, referencing our baseline being Naive Bayes classification model as well
as different permutations of an SVM classification model. We found that:

Our SVM non processed model did slightly better than our baseline.
Removing stop words from our training data, had no positive effect on our SVM model, and actually
effected the scoring negatively.
Lemmatizing the training data, didnt have much of an effect on the scoring.

There was a surprising factor in our results:

Removing stopwords having a negative effect. This was strange as one would think this would fine
tune our model to have a more accurate classification, but this was not the case.
This could be because stop words actually play a role in identifying spam emails, it would be
interesting to analyse the difference in stop words within spam and non-spam emails, though we will
leave that for another time.

Page 10 of 11

Summary

We have developed a email spam classifier with very good scores. Though because our classifier isn't
100% accurate, this means there is still going to be some spam slipping through as well as legitimate mails
getting classified as spam. Because of this, people won't be secure from unsolicited mails and there will
still always be a threat, though implementing this model within companies as well as general email server
providers would be a start in solving our predefined problems in the domain.

What could be better?

The accuracy of our model, this possibly would not be the thing to improve on, as it is pretty high. I think
using our highest SVM classifier again as a baseline, and try training different types of models and using
different methods of representing text numerically, that focuses on semantics and grammar, would be the
better way to go as ordering of words and semantics is obviously a huge part of a language, it would only
make sense to make sure these are addressed in a classifier.

If I had more time with this project, I would analyse how other encoders such as 'word2Vec' do on our
SVM classifier. I would also have concatenated more datasets of spam and non-spam mails, i felt my
dataset got to small after balancing it.

References:

1. The Eleventh Sense, "HOW SPAM FILTERS WORK (AND HOW TO STOP EMAILS GOING TO
SPAM)", Ivan LaBianca, 2022/03/4, https://www.theseventhsense.com/blog/how-spam-filters-work-
and-how-to-stop-emails-going-to-spam

2. Statista, 2022/03/01, https://www.statista.com/statistics/420391/spam-email-traffic-share/
3. Kaggle, Venkatesh Garnepudi, 2018, https://www.kaggle.com/datasets/venky73/spam-mails-dataset
4. Velomethod, "Why Is Spam Filtering Not 100% Accurate?", Ruthie Toce, 2019/05/17,

https://www.velomethod.com/post/why-is-spam-filtering-not-100-accurate
5. Data Pro, "What's On the Other Side of Your Inbox - 20 SPAM Statistics for 2022", 2022/07/20,

Nikolina Cveticanin, https://dataprot.net/statistics/spam-statistics/
6. Apache SpamAssassin, website, https://spamassassin.apache.org/index.html

Page 11 of 11

https://www.theseventhsense.com/blog/how-spam-filters-work-and-how-to-stop-emails-going-to-spam
https://www.statista.com/statistics/420391/spam-email-traffic-share/
https://www.kaggle.com/datasets/venky73/spam-mails-dataset
https://www.velomethod.com/post/why-is-spam-filtering-not-100-accurate
https://dataprot.net/statistics/spam-statistics/
https://spamassassin.apache.org/index.html

