Within this report we will be creating a implementation of the KNN algorithm on the wine
dataset.

This report will consist of the following sections:

. Dataset Exploration

. Implementing kNN

. Classifier evaluation

. Nested Cross-validation

Lets just load all the libraries we going to use in one shot
from sklearn import datasets

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import math

Dataset Exploration

In report we are going to be working with the Wine dataset. This is a 178 sample dataset that
categorises 3 different types of Italian wine using 13 different features.

set matplotlib backend to inline
smatplotlib inline

load data
wine=datasets.load wine()

this dataset has 13 features, we will only choose a subset of these
df wine = pd.DataFrame(wine.data, columns = wine.feature names)
selected features = ['alcohol', 'flavanoids', 'color intensity', 'ash']

extract the data as numpy arrays of features, X, and target, y
X = df wine[selected features].values
y = wine.target

Visually exploring the data

Lets plot the data as is, and see if we can identify any patterns and relations.

define plotting function
def myplotGrid(X,y, features):

Plots a matrix pair scatter plot.

Args:
X (array-like): Array of vectors.
y (array-like): Array of dependent variables.
features (array-like): Array of feature labels

Returns:
Nothing
Creates a dataframe
df = pd.DataFrame(X, columns = features)
Concatenate dependent variables with independent variables
df['Categories'] =y
return sns.pairplot(df, hue="Categories")

run the plotting function
myplotGrid(X,y,selected features)

<seaborn.axisgrid.PairGrid at 0x7f938elcda80>

alcohol

flavanocids

ity

color_intensi

3.0 4

2.5 1

ash

2.0 1

15 4

Sihee

a ’h-..

kY

:‘;..:“.-.
.'ﬁ' e
o %,

alcohol

favanoids

5 10
color_intensity

Exploratory Data Analysis under noise

When data is collected under real-world settings they usually contain some amount of noise
that makes classification more challenging. Here we introduce some noise to the dataset.

noise code
mySeed = 12345

np.random.seed(mySeed)
XN=X+np.random.normal(0,0.6,X.shape)

Plotting noisy data
myplotGrid(XN,y,selected features)

<seaborn.axisgrid.PairGrid at 0x7f93355f9420>

o : v . g : o'
LI . 8 ® . [
B g ®e . & .
.: 2‘5- ve, ° ::. 2 : ®ee . L] b &
S, | &Y Ley
« MWL . B e w &
t’ﬁ 4, . © .5 - & o e °% °
S0 | ER TR
41 .-. L]
®
1l (1 o ghe Wy e
= ™ .'%q:e's'. ‘ﬁ)’... . e ‘.E‘:' o
3 lhe . @ Waa 0 - . L
T2 .9‘1 | % 0 -
i R 3 LR “f g
14 a2 83 g:’.o. . 1 %
Taeatt 0t b r AN oo &
4 ‘PJ Sen © ® .
0 L @ Ll oy o %
. B | ll $. Ccategories
. . . 0
127 e * 1 » " 1 /\ 1 a ® e 1
E."m_ A .=-~ ¢ 1 . .:'-B..) i [] '.:;. . e
= .0 00 LE L)
5 L .' “os ..' .".}? \ .? ”.
§| 5 4 b é&i. .oui.. 1 | 1 os I
= L e \ o . .
., e % TR R A
] - L 8y .
e s%.. % = 5 e / P [. ™
2 3??!“:. L ::,é" ar . 1 | /\ 1 ﬁ .lfé'.‘&-
0 L] L] 4 = I\'- : : 4 L]
L] L] L]
44 - '] ®
o* o %o . . '.f: . o .
® as %l o ."* o -
31 .n"o%" } % "'ﬁ?fa‘ s ° '.:-?? &= e
E « .3 e 'é:;.: ° A A :‘g" oo
2 L ...
eavs » w00 %s ' ;.‘.i'." A
1 & S, . % L
14
0 0 .
lIO lIZ II4 1‘6 lI) i ‘:I 4] 5I Ib IIS
alcohol flavanoids color_intensity

Exploratory data analysis

Here we will visualise correlations amoungst the variables.

Helper functions

plotHeatMap
def plotHeatMap(matrix, x labels, y labels, title, xlabel = None,
ylabel = None):

Plots a heat map of a matrix.

Args:
matrix (array-like) 2D: 2D form of matrix.
X labels (array-like): Lables for the x axis

y labels (array-like): Lables for the y axis
title (str): Title of the plot

xlabel (str): Title for the x labels, default = None

ylabel (str): Title for the y labels, default = None
Returns:

Nothing

sns.heatmap(matrix, annot=True, cmap='Blues’,
xticklabels=x labels, yticklabels=y labels)

plt.xlabel(xlabel)

plt.ylabel(ylabel)

plt.title(title)

plt.show()

First we will create dataframes of the original and noisy data
X df = pd.DataFrame(X, columns=selected features)
XN df = pd.DataFrame(XN, columns=selected features)

1. Independent-independent correlation

Corrolation between features of original dataset

correlations original = X df.corr()

plotHeatMap(correlations original, correlations original.columns,
correlations original.columns, "Correlation \n Independent-independent
\n Original dataset")

Corrolation between features of noisy dataset

correlations noisy = XN df.corr()

plotHeatMap(correlations noisy, correlations noisy.columns,
correlations noisy.columns, "Correlation \n Independent-independent \n
Noisy dataset")

y flavanoids alcohol

color_intensit

ash

I
alcohol

Correlation
Independent-independent
Original dataset

1
flavanoids color_intensity

ash

1.0

0.8

0.6

0.4

- 0.2

- 0.0

Correlation
Independent-independent

Noisy dataset
1.0
=
L
=]
Lt
T 0.8
L
h=
£ 0.6
1]
=
1%}
=
oy |
‘T - 0.4
=
e
=
EI
S - 0.2
8
=
0 - 0.0

I
flavanoids color_intensity ash

I
alcohol

From the plots we can see the difference between the original and noisy data isn't really
effecting the correlation analysis. So we could use either one in determining which variables to
use.

E.G. We can notice that (color_intensity,alcohol) are the higher correlations, meaning they more
dependent to eachother than the rest, so if this is one of the options, we would prefer the latter.

2. Independent-dependent correlation

Corrolation between independent and dependent variables in the noisy
dataset

XN df full = XN df.copy()

XN _df full['Categories'] =y

print (" \nCorrelation Independent-dependent Noisy
dataset")

pd.DataFrame(XN df full.corr()['Categories'])

Correlation Independent-dependent Noisy dataset

Categories
alcohol -0.268099

flavanoids -0.764258
color_intensity 0.252048
ash 0.036660
Categories 1.000000

From this analysis we can see that 'flavanoids' will defiantly be one of our variables as it shows a
high correlation. And there is a very close second between 'alcohol' and 'color_intensity'.

Due to our results we have two possible feature sets. Where 'flavanoids' is our constant

. (flavanoids, alcohol)
. (flavanoids, color_intensity)

The difference between 'alcohol' and 'color_intensity' in the independent-dependent correlation
is 0.016 (at my run: seed 12345). The difference between 'alcohol' and 'color_intensity' in the
independent-independent correlation against 'flavanoids' is 0.094 (at my run: seed 12345).

As the differences are more prominent in the independent-independent correlations, this is the
values i will let decide.

Conclusion: We will opt for: (flavnoids, color_intensity)

Data with noise

Comparing data with and without noise.

Here we plotting the variance for each variable in the Original and
noisy dataset
data = {

"Original" : X df.var(),

"Noisy" : XN df.var()

}
pd.concat(data, axis = 1)

Original Noisy
alcohol 0.659062 0.901877
flavanoids 0.997719 1.327416
color intensity 5.374449 5.976439
ash 0.075265 0.426641

* There wasnt much of a difference in the correlation comparison.

* Thereisvisually a big difference, where visualising 'groups' of the categories is much
more difficult from the plotted graph

* Thereisa larger spread, being indicated on the Gaussian distributions, this can be seen in
the diagonal histograms, as the peaks arent as sharp, as well as comparing the variance
we notice all variables get increased.

Implementing kNN

Here we implement our one instance of a KNN algorithm.

helper code

Euclidean distance
def euclidean distances(vector 1, vector 2):

Calculates the distance of two vectors using euclidean method.

Args:
vector 1 (array-like): Array of vector.
vector 2 (array-like): Array of vector.

Returns:
A float

return np.sqrt(sum(np.square(vector 1 - vector 2)))

Manhattan distance
def manhattan distances(vector 1, vector 2):

Calculates the distance of two vectors using manhattan method.

Args:
vector 1 (array-like): Array of vector.
vector 2 (array-like): Array of vector.

Returns:
A float
return sum(np.abs(v.1 - v 2) for v.1, v 2 in
zip(vector_1,vector 2))

highest count
def highest count(neighbors 1list):

Counts the highest occurence of a dependent variable.

Args:
neighbors list (array-like): Array of objects of the form: {
"dependent variable': ...,
‘distance': 0.00
}
Returns:

highest dependent variables (array-like)

occurrences = {}
Totalling up the dependent variables distances
for neighbor in neighbors list:
if not neighbor['dependent variable'] in occurrences:
occurrences[neighbor[‘dependent variable']] =1
else:
occurrences|[neighbor['dependent variable']] += 1
Finding what dependent variable occured the most
max_occured dependent variable = max(occurrences,
key=occurrences.get)
Finding all the max occured dependent variables
max_occured dependent variables = []
Populating the max occurences
for key in occurrences.keys():
if occurrences[key] ==
occurrences[max occured dependent variable]:
max occured dependent variables.append(key)
return max_occured dependent variables

lowest distance
def lowest distance(neighbors list):

Totals the distances and returns the lowest dependent variable.

Args:
neighbors list (array-like): Array of object of the form: {
'dependent variable': ...,
‘distance': 0.00
}.
Returns:

A dependent variable with the lowest distance
totals = {}
Totalling up the dependent variables distances
for neighbor in neighbors list:
if not neighbor['dependent variable'] in totals:
totals[neighbor['dependent variable']] =
neighbor['distance’]
else:
totals[neighbor['dependent variable']] +=
neighbor['distance"’]
Return the smallest distance variable
return min(totals, key=totals.get)

find who majority
def find who majority(train y, neighbors to consider):

Finds the majority variable from an array, though only considering

a set of neighbors.

Args:
train y (array-like): Array of the dependent variables
neighbors to consider (array-like): Array of dependent
variables to consider

Returns:
A dependent variable with the highest occurence
value counts = {}
Totalling the occurences of all variables
for value in train y:
if value in value counts:
value counts[value] += 1
else:
value counts[value] =1
Sorting the results decending
sorted counts = dict(sorted(value counts.items(), key=lambda x:
x[1], reverse=True))
Iterating through results to find the highest
for key in sorted counts.keys():
if key in neighbors to consider:
return key

mykNN code
def mykNN(X,y,X ,K=4, distance='euclidian', even decider='distant'):

Uses KNN brute force, to predict dependent variables

Args:

X (array-like): Train Xs Array of vector.

y (array-like): Train ys Array of vector.

X (array-like): Test Xs Array of vector.

K (int): Neighbors to consider, default = 4

distance (str): Distance metric to use, options =
['euclidean', 'manhattan'], default = 'euclidean'

even decider (string): This is the method in deciding which
variable in the case there is an even count of neighbors, options =
['distant', 'majority'], default = 'distant'

Returns:
Predictions (array-like)
Initialising the predicted result
predictions = []
for train _value in X :
Initialising the neighbors result
neighbors = []
for train_i, test value in enumerate(X):

Calculating the distance between vectors
if(distance == 'manhattan'):
neighbor distance = manhattan distances(train value,
test value)
else:
neighbor distance = euclidean distances(train value,
test value)
Recording the neighbor data point and calculated

distance
neighbor object = {
‘dependent variable': y[train i],
‘distance': neighbor distance
¥
Handling while neighbors havent reached the max
neighbors

if len(neighbors) < K:
neighbors.append(neighbor object)
else:
Checking if there exists a neighbor that has a
greater distance
for neighbor i, neighbor in enumerate(neighbors):
if neighbor['distance’'] > neighbor distance:
Replace neighbor
neighbors[neighbor i] = neighbor object
break
Calculate the most prominent neighbor
highest count neighbor = highest count(neighbors)
Handle if there isnt a single priminent neighbor
if len(highest count neighbor) > 1:
if even decider == 'majority':
predictions.append(find who majority(y,
highest count neighbor))
else:
predictions.append(lowest distance(neighbors))
else:
predictions.append(highest count neighbor[0])
Checking the length of the predictions is valid
if len(X_) != len(predictions):
raise Exception("something went wrong")
return predictions

Classifier evaluation

Here we will create the tools for evaluating our model

Confusion matrix functions

Confusion matrix
def confusionMatrix(predicted values, true values,
dependent variables):

Creates a confusion matrix.

Args:
predicted values (array-like): Array of predicted values.
true values (array-like): Array of true values.
dependent variables (array-like): Array of dependent
variables.

Returns:
confustion matrix (array-like) 2D
Initialise the confustion matrix with 0's
confusion matrix = np.zeros((len(dependent variables),
len(dependent variables)))
Iterate over each value and increment the matrix
for true value, predicted value in zip(true values,
predicted values):
true index = dependent variables.index(true value)
pred index = dependent variables.index(predicted value)
confusion matrix[true index][pred index] += 1
return confusion matrix

Normalise confusion matrix
def normalise confusion matrix(confusion matrix):

Normalises a confusion matrix to be values between 0 - 1.

Args:
confustion matrix (array-like) 2D: 2D form of confusion
matrix.

Returns:
normalised confustion matrix (array-like) 2D
Calculating the sum of individual rows
row sums = np.sum(confusion matrix, axis=1)
Dono if this is a correct hack???
row sums[row sums == 0] = 1
print("row sums", row sums)
Reshaping result from 1d to 2d
row sums reshaped = row sums.reshape(-1, 1)
print("row sums reshaped", row sums reshaped)
print("confusion matrix",confusion matrix)
return confusion matrix / row sums reshaped

Evaluating functions

Calculate Precision
def calculate precision(confusion matrix, dependent variable index):

Calculate precision of a dependent variable in a confusion matrix

Args:
confusion matrix (array-like) 2D: 2D form of confusion matrix.
dependent variable index (int): The index of the dependent
variable to be calculated.

Returns:
float: Precision value.
Getting the TP being the diagonal
true positives = confusion matrix[dependent variable index]
[dependent variable index]
Getting the false positives being the rows
false positives = np.sum(confusion matrix|[:,
dependent variable index]) - true positives
Calculating precision
if((true positives + false positives) == 0):
return 0
return true positives / (true positives + false positives)

Calculate Recall
def calculate recall(confusion matrix, dependent variable index):

Calculate recall of a dependent variable in a confusion matrix

Args:
confusion matrix (array-like) 2D: 2D form of confusion matrix.
dependent variable index (int): The index of the dependent
variable to be calculated.

Returns:
float: Recall value.
Getting the TP being the diagonal
true positives = confusion matrix[dependent variable index]
[dependent variable index]
Getting the false negatives being the columns
false negatives =
np.sum(confusion matrix[dependent variable index, :]) - true positives
Calculating recall
if((true positives + false negatives) == 0):
return 0
return true positives / (true positives + false negatives)

Calculate F1
def calculate fl(confusion matrix, dependent variable index):

Calculate F1 of a dependent variable in a confusion matrix

Args:
confusion matrix (array-like) 2D: 2D form of confusion matrix.
dependent variable index (int): The index of the dependent
variable to be calculated.

Returns:
float: F1 value.
Getting precision score
precision = calculate precision(confusion matrix,
dependent variable index)
Getting recall score
recall = calculate recall(confusion matrix,
dependent variable index)
Calculating recall
if((precision + recall) == 0):
return 0
return 2 * (precision * recall) / (precision + recall)

Calculate Accuracy
def calculate accuracy(confusion matrix):

Calculate Accuracy of a confusion matrix

Args:
confusion matrix (array-like) 2D: 2D form of confusion matrix.

Returns:
float: Accuracy value.
Getting the total of the values along the diagonal
true prodictions = np.trace(confusion matrix)
Getting the total of the values in the matrix
total predictions = np.sum(confusion matrix)
Calculating recall
if(total predictions == 0):
return 0
return true prodictions / total predictions

Split a dataset
def split dataset(independent variables, dependent variables,
test size = 0.2, seed = 0):

Splits a dataset into a train and test set

Args:
independent variables (array-like): X.
dependent variables (array-like): Y.
test size (double): The percentage of the set to be test set
seed (int): The seed value for the random permutation

Returns:
tuple: X train, X test, y train, y test

Generating a random permutation of indicies per the seed

np.random.seed(seed)

indexes = np.random.permutation(len(independent variables))

Calculate the splitting position amoungst the indexes

splitting index = int(len(independent variables) * (1 -
test size))

Shuffel the arrays

independent variables shuffled

dependent variables shuffled =

Create the return sets

X train = independent variables shuffled[:splitting index]

X _test = independent variables shuffled[splitting index:]

y train = dependent variables shuffled[:splitting index]

y test = dependent variables shuffled[splitting index:]

= independent variables[indexes]
dependent variables[indexes]

return (X train, X test, y train, y test)

Scale value
def scale value(value, min, max):

Scales a value between 0 - 1.

Args:
value (double): The value to be scaled.
min (double): The min value of the class
max (double): The max value of the class

Returns:
Scaled value (double)
range = max - min
scaled value = (value - min) / range
return scaled value

Scale independent variables
def scale independent variables(independent variables):

Scales values in a 2d array, of independent variables to values
between 0 - 1.

Args:

independent variables (array-like) 2D: The independent
variables to scale.

Returns:
Scaled independent variables (array-like)
Initialise the dimensions
dimensions = len(independent variables[0])
Find the min and max for each variable
min max s = []
for 1 in range(dimensions):
elements = [data point[i] for data point in
independent variables]
min value = min(elements)
max_value = max(elements)
min max s.append((min value, max value))
Scale each data point
for index 1 in range(len(independent variables)):
for index 2 in range(len(independent variables[index 1])):
independent variables[index 1][index 2] =
scale value(independent variables[index 1][index 2],
min max s[index 2][0], min max s[index 2][1])
return independent variables

Evaluate our model

Lets use our model to predict

First we should normalise our data to prevent bias amoungst
independent variables

X scaled = scale independent variables(X)

XN scaled = scale independent variables (XN)

First we need to split our dataset
X train, X test, y train, y test = split dataset(XN scaled, v,
test size = 0.2, seed = 5)

We can now use our model to predict
predicted ys = mykNN(X train, y train, X test, K=6,
distance='euclidian', even decider='majority')

Lets evaluate our model

First we can create a confusion matrix with the results
confusion matrix = confusionMatrix(predicted ys, y test, [0,1,2])
We will normalise these results

normalised confusion matrix =

normalise confusion matrix(confusion matrix)

Lets see our accuracy

print("myKNN accuracy: ",
calculate accuracy(normalised confusion matrix))

Lets plot the confusion matrix in a heat map
plotHeatMap(normalised confusion matrix, [0,1,2], [0,1,2], 'Confusion
Matrix', xlabel = 'Predicted', ylabel = 'True')

myKNN accuracy: 0.9090909090909092

Confusion Matrix

1.0

0.8

0.6

- 0.4

=002

i -0.0
0 1 2
Predicted

Compare our model

Lets compare our model with sklearns model

Importing modules
from sklearn.neighbors import KNeighborsClassifier

Fit and predict with sklearns model

neigh = KNeighborsClassifier(n neighbors=6, metric='euclidean')
neigh.fit(X train, y train)

sk predicted ys = neigh.predict(X test)

First we can create a confusion matrix with the results
sk confusion matrix = confusionMatrix(sk predicted ys, y test,

[0,1,2])

We will normalise these results

sk _normalised confusion matrix =

normalise confusion matrix(sk confusion matrix)

Lets see sk knn accuracy

print("SK knn accuracy: ",

calculate accuracy(sk normalised confusion matrix))

Lets plot the confusion matrix in a heat map
plotHeatMap(sk normalised confusion matrix, [0,1,2], [0,1,2],
"Confusion Matrix', xlabel = 'Predicted', ylabel = 'True')

SK knn accuracy: 0.8977272727272728

Confusion Matrix

1.0

0.8

0.6

- 0.4

-0D.2

- 0.0

Predicted

Conclusion
To conclude what we have noticed comparing our knn model to sklearns model

Our model seems simular but different in terms of an accuracy reading, this is likely to be due to
how we have handled the colliding count of neighbors. We have chosen to have our decision
based on counting the closest neighbors, and what we call the 'even_decider' being a method
used when there is more than one neighbor who wins the count.

* even_decider ="'majority' This method calculates which dependent_variable of the
winners have the majority in the entire dataset

* even_decider = 'distant' This method calculates which dependent_variables of the
winners are closest to the new data-point

Nested Cross-validation

Here we will perform cross-validation to further evaluate and train our model.

myNestedCrossVal code
def myNestedCrossVal(X, y, outer folds, inner folds, k neighbors,
distances, even deciders, seed):

Perform nested cross validation on dataset, using myKNN algorithm

Args:

X (array-like): All independent variables.

y (array-like): All dependent variables.

outer folds (int): Number of outer folds

inner folds (int): Number of parameter inner folds

k neighbors (array-like): Different neighbor counts to
evaluate against

distances (array-like): Distance metric to evaluate, options =
['euclidean', 'manhattan']

even deciders (array-like): This is the methods in deciding
which variable in the case there is an even count of neighbors,
options = ['distant', 'majority']

seed (int): The seed value for the random permutation

Returns:
Tuple as below:

(array-like) objects containing the results of each outer
fold, in the form: {
fold: (int),
accuracy: (double),
‘confusion matrix': (2D array)
k: (int),
distance: (str),
even decider: (str)
}
(double) mean of accuracies
(double) std of accuracies
Create instance to hold the results from outer folds
results outer fold = [] # array of -> {fold: 1, accuracy: 30.3, k:
3, 'confusion matrix': (2d array), distance: ‘'manhattan',
even decider: 'majority'} -> for each fold
Randomise the indicies according to seed
np.random.seed(seed)

entire fold outer indicies X
entire fold outer indicies Y
Create outer fold indices
outer fold start end indicies = []
spaces outer = int((len(entire fold outer indicies X) /
outer folds) // 1)
for i in range(outer folds):
start index = i * spaces outer
end index = (i * spaces outer) + (spaces outer - 1)
outer fold start end indicies.append((start index,end index))
For each outer fold
for outer fold start end index i, outer fold start end index in
enumerate(outer fold start end indicies):
Create instance to hold the results from inner fold
results inner fold average = [] # array of ->
{accuracy average: 30.3, k: 3, distance: ‘'manhattan', even decider:
'majority'} -> average for each combination
Construct fold indicies
indicies to exclude = np.arange(outer fold start end index[0O],
outer fold start end index[1] + 1)
entire fold inner indicies X
entire fold outer indicies X[~np.isin
cies X.shape[0]), indicies to exclude
entire fold inner indicies Y
entire fold outer indicies Y[~np.isin
cies Y.shape[0]), indicies to exclude
Create inner fold indices
inner fold start end indicies = []
spaces inner = int((len(entire fold inner indicies X) /
inner folds) // 1)
for 1 in range(inner folds):
start index = i * spaces inner
end index = (i * spaces inner) + (spaces inner - 1)

np.random.permutation(len(X))
entire fold outer indicies X

(np.arange(entire fold outer indi
)]

(
)

np.arange(entire fold outer indi
]

inner fold start end indicies.append((start index,end index))
For each property in k neighbors
for k in k neighbors:
For each property in distances
for distance in distances:
For each property in even deciders
for even decider in even deciders:
Create instance to record average from
inner folds
results inner fold = [] # array of -> values
(doubles)
For each inner fold
for inner fold start end index in
inner fold start end indicies:
Construct fold indicies for train and

evaluate sets
indicies to exclude =
np.arange(inner fold start end index[0], inner_ fold start end index[1]
+ 1)
train set X =
entire fold inner indicies X[~np.isin(np.arange(entire fold inner indi
cies X.shape[0]), indicies to exclude)]
train set Y =
entire fold inner indicies Y[~np.isin(np.arange(entire fold inner indi
cies Y.shape[0]), indicies to exclude)]
evaluate set X =
entire fold inner indicies X[inner fold start end index[0]
inner fold start end index[1] + 1]
evaluate set Y =
entire fold inner indicies Y[inner fold start end index[0]
inner fold start end index[1] + 1]
Train model
predicted ys = mykNN(X[train set X],
y[train set Y], X[evaluate set X],K=k, distance=distance,
even decider=even decider)
Generate confusion matrix
confusion matrix =
confusionMatrix(predicted ys, yl[evaluate set Y], [0,1,2])
normalised confusion matrix =
normalise confusion matrix(confusion matrix)
Calculate accuracy
accuracy =
calculate accuracy(normalised confusion matrix)
Push result to results inner fold
results inner fold.append(accuracy)
Push average in results inner fold average from
results inner fold
average accuracy = sum(results inner fold) /
len(results inner fold)
results inner fold average.append({
‘accuracy average': average_accuracy,
'k': Kk,
‘distance': distance,
‘even_decider': even_decider
})
Find the best parameters from results inner fold average
best parameters = max(results inner fold average, key=lambda
obj: obj["accuracy average"])
Construct fold indicies for train and test sets
indicies to exclude = np.arange(outer fold start end index[0],
outer fold start end index[1] + 1)
train set X =
entire fold outer indicies X[~np.isin(np.arange(entire fold outer indi
cies X.shape[0]), indicies to exclude)]

train set Y =
entire fold outer indicies Y[~np.isin(np.arange(entire fold outer indi
cies Y.shape[0]), indicies to exclude)]
evaluate set X =
entire fold outer indicies X[outer fold start end index[0]
outer fold start end index[1] + 1]
evaluate set Y =
entire fold outer indicies Y[outer fold start end index[0]
outer fold start end index[1] + 1]
Train model with full dataset and best conbination parameter
results from results inner fold average
predicted ys = mykNN(X[train set X], y[train set Y],
X[evaluate set X],K=best parameters['k'],
distance=best parameters['distance'],
even decider=best parameters|['even decider'])
Generate confusion matrix
confusion matrix = confusionMatrix(predicted ys,
y[evaluate set Y], [0,1,2])
normalised confusion matrix =
normalise confusion matrix(confusion matrix)
Calculate accuracy
accuracy = calculate accuracy(normalised confusion matrix)
Push to results outer fold
results outer fold.append({
'fold': outer fold start end index i + 1,
‘accuracy': accuracy,
‘confusion matrix': normalised confusion matrix,
'k': best parameters['k'],
‘distance': best parameters['distance'],
‘even decider': best parameters['even decider']
})
Calculating the mean and standard deviation of folds
accuracies = [fold['accuracy'] for fold in results outer fold]
accuracy mean = sum([fold['accuracy'] for fold in
results outer fold]) / len(results outer fold)
squared diff sum = sum((x - accuracy mean) ** 2 for x in
accuracies)
variance = squared diff sum / len(results outer fold)
accuracy std = math.sqrt(variance)
return (results outer fold, accuracy mean, accuracy std)

evaluate clean data code

clean results, clean results mean, clean results std =

myNestedCrossVal(X scaled, y, 5, 5, list(range(1,10)),

['euclidean', 'manhattan'], ['majority', 'distance'], 4)

evaluate noisy data code

noisy results, noisy results mean, noisy results std =
myNestedCrossVal(XN scaled, y, 5, 5, list(range(1,10)),
['euclidean', 'manhattan'], ['majority', 'distance'], 4)

Print the summaries Clean Data

print("
print("Clean data summary")
print("Accuracy Mean:
print("Accuracy STD:

", clean results mean)
", clean results std)

print("----- Results")
for fold in clean results:

print("Fold =", fold['fold'], "| K =", fold['k'], "| Distance
fold['distance'], "| Even Decider =", fold['even decider'], "|
Accuracy =", fold['accuracy'])
print(" ====

")

Clean data summary
Accuracy Mean:
Accuracy STD:

0.9629222629222628
0.03656766724781932

----- Results
Fold = 1 | K= 6 | Distance = manhattan | Even Decider = majority |
Accuracy = 1.0
Fold = 2 | K = 4 | Distance = manhattan | Even Decider = distance |
Accuracy = 0.9285714285714285
Fold = 3 | K = 8 | Distance = euclidean | Even Decider = distance |
Accuracy = 1.0
Fold = 4 | K= 7 | Distance = manhattan | Even Decider = majority |
Accuracy = 0.9116809116809118
Fold = 5 | K= 4 | Distance = euclidean | Even Decider = distance |
Accuracy = 0.9743589743589745
Print the summaries Noisy Data
print(" ==== ")
print(“Noisy data summary")
print ("Accuracy Mean: *, noisy results mean)
print("Accuracy STD: ", noisy results std)
print("----- Results")
for fold in noisy results:

print("Fold =", fold['fold']l, "| K =", fold['k'], "| Distance =
fold['distance'], "| Even Decider =", fold['even decider'], "|
Accuracy =", fold['accuracy'])
print(" ==== ")
Noisy data summary
Accuracy Mean: 0.88773199023199
Accuracy STD: 0.049730865523894205
----- Results
Fold = 1 | K = 8 | Distance = manhattan | Even Decider = distance |
Accuracy = 0.9209401709401711
Fold = 2 | K= 8 | Distance = euclidean | Even Decider = majority |
Accuracy = 0.798941798941799

’

Fold = 3 | K= 6 | Distance = euclidean | Even Decider = distance |
Accuracy = 0.9458333333333333

Fold = 4 | K= 4 | Distance = euclidean | Even Decider = distance |
Accuracy = 0.8860398860398858

Fold = 5 | K= 8 | Distance = euclidean | Even Decider = distance |
Accuracy = 0.8869047619047619

Summary of results (seed 4)

The results from above:

Fold accuracy k distance even decider

1 1.0 6 manhattan majority

2 .93 4 manhattan distance

3 1.0 8 euclidean distance

4 91 7 manhattan majority

5 .97 4 euclidean distance

total .96 + 0.04

The results from above (noisy data):

Fold accuracy k distance even decider

1 .92 8 manhattan distance

2 .80 8 euclidean majority

3 .95 6 euclidean distance

4 .89 4 euclidean distance

5 .89 8 euclidean distance

total .88+ 0.05

Confusion matrix summary

Summarise the overall results of your nested cross validation evaluation of your K-NN algorithm
using two summary confusion matrices (one for the noisy data, one for the clean data). You
might want to adapt your myNestedCrossVal code above to also return a list of confusion
matrices.

Use or adapt your evaluation code above to print the two confusion matrices below. Make sure
you label the matrix rows and columns. You might also want ot show class-relative precision and
recall.

Average a set of confusion matricies
def average confusion matricies(confusion matricies):

Averages multiple confusion matricies into one matrix

Args:
confusion matricies (array-like): An array of multiple
confusion matricies

Returns:
confusion matrix (array-like): Single confusion matrix
Initialise a base confusion matrix
base matrix = np.zeros(np.shape(confusion matricies[0]))
Totalling up all confusion matricies
for confusion matrix in confusion matricies:
base matrix = [[x + y for x, y in zip(rowl, row2)] for rowl,
row2 in zip(confusion matrix, base matrix)]
Averaging the base matrix
base matrix = [[element / len(confusion matricies) for element in
row] for row in base matrix]
return base matrix

print(" ")
print('CLEAN')
print("----- Scoring metrics")

Issolate confusion matricies

clean confusion matricies = [fold['confusion matrix'] for fold in
clean results]

Retrieve a average matrix

clean confusion matricies average =

average confusion matricies(clean confusion matricies)

Printing precision, recall and f1l score

data = [

[calculate precision(np.array(clean confusion matricies average),
0),calculate recall(np.array(clean confusion matricies average),
0),calculate fl(np.array(clean confusion matricies average), 0)],

[calculate precision(np.array(clean confusion matricies average),
1),calculate recall(np.array(clean confusion matricies average),
1),calculate fl(np.array(clean confusion matricies average), 1)],

[calculate precision(np.array(clean confusion matricies average),
2),calculate recall(np.array(clean confusion matricies average),
2),calculate fl(np.array(clean confusion matricies average), 2)]

]

scoring metrics = pd.DataFrame(data,

columns=['precision', 'recall','F1'], index=['Label 0', 'Label 1°',
"Label 2'])

print(scoring metrics)

print("----- Confusion Matrix")

Plot the average matrix
plotHeatMap(clean confusion matricies average, [0,1,2], [0,1,2],
‘Clean Confusion Matrix', xlabel = 'Predicted', ylabel = 'True')

print(" ")
print ("'NOISY"')

print("----- Scoring metrics")

Issolate confusion matricies

noisy confusion matricies = [fold['confusion matrix'] for fold in
noisy results]

Retrieve a average matrix

noisy confusion matricies average =

average confusion matricies(noisy confusion matricies)
Printing precision, recall and f1l score

data = [

[calculate precision(np.array(noisy confusion matricies average),
0),calculate recall(np.array(noisy confusion matricies average),
0),calculate fl(np.array(noisy confusion matricies average), 0)],

[calculate precision(np.array(noisy confusion matricies average),
1),calculate recall(np.array(noisy confusion matricies average),
1),calculate fl(np.array(noisy confusion matricies average), 1)],

[calculate precision(np.array(noisy confusion matricies average),
2),calculate recall(np.array(noisy confusion matricies average),
2),calculate fl(np.array(noisy confusion matricies average), 2)]

]

scoring metrics = pd.DataFrame(data,

columns=['precision', 'recall','F1'], index=['Label 0', 'Label 1°',
"Label 2'])

print(scoring metrics)

print("----- Confusion Matrix")

Plot the average matrix
plotHeatMap(noisy confusion matricies average, [0,1,2], [0,1,2],

‘Noisy Confusion Matrix', xlabel = 'Predicted', ylabel = 'True')
CLEAN
----- Scoring metrics

precision recall F1

Label 0 0.943005 1.000000 0.970667
Label 1 0.976187 0.910989 0.942462
Label 2 0.971609 0.977778 0.974684
----- Confusion Matrix

Clean Confusion Matrix

0 1 2
Predicted
NOISY
----- Scoring metrics
precision recall F1

Label 0 0.909165 0.873040 0.890737
Label 1 0.803372 0.898489 0.848272
Label 2 0.967796 0.891667 0.928173
----- Confusion Matrix

Noisy Confusion Matrix

9] 1 2
Predicted

	Dataset Exploration
	Visually exploring the data
	Exploratory Data Analysis under noise
	Exploratory data analysis
	Data with noise

	Implementing kNN
	Classifier evaluation
	Evaluate our model
	Compare our model
	Conclusion

	Nested Cross-validation
	Summary of results (seed 4)
	Confusion matrix summary

